

Welcome to Sustainsys.Saml2

The Sustainsys.Saml2 library adds SAML2P support to ASP.NET web sites, allowing the web site
to act as a SAML2 Service Provider (SP). The library was previously named Kentor.AuthServices.
Sustainsys.Saml2 is open sourced and contributions are welcome, please see contributing guidelines
for info on coding standards etc.

Using Sustainsys.Saml2

Using the Sustainsys.Saml2 library to add SAML2P support into your ASP.NET web applications is a two-step process:

	Reference the Nuget package

	Provide the necessary configuration information

The exact nature of these steps depends on the ASP.NET integration you’re after.
See Getting Started for all the details.

Licensing

The library is licensed under the GNU Lesser General Public License (LPGL) [https://www.gnu.org/licenses/lgpl-3.0.en.html].

Starting with version 2.0.0, the license has been changed to the MIT license [https://tldrlegal.com/license/mit-license].

Getting Started

See the sections below which contain information that will help you get started adding SAML2P support into
your flavor of ASP.NET.

If you have gotten the appropriate Nuget package installed and then completed the configuration
described below and are having any trouble, make sure to check out the Troubleshooting for assistance.

A sample SAML identity provider is available to further assist you in getting started if you don’t already
have a SAML identity provider that you can test with. You can access it directly at https://stubidp.sustainsys.com,
or you can download the solution to run it locally yourself (it’s a project within the
Sustainsys.Saml2 github repository [https://github.com/Sustainsys/Saml2]).

ASP.NET Web Forms

The Saml2AuthenticationModule provides Saml2 authentication to IIS web sites. In many cases it should just be
configured in the web.config file and work without any code written in the application at all
(even though providing an owin ClaimsAuthenticationManager for claims translation is highly recommended).

Nuget Package to use: Sustainsys.Saml2.HttpModule [https://www.nuget.org/packages/Sustainsys.Saml2.HttpModule/]

See Configuration for information about how to configure the web.config file.

ASP.NET MVC

The MVC package contains an MVC controller that will be accessible
in your application just by installing the package in the
application. For MVC applications a controller is preferred
over using the authentication module as it integrates with MVC’s
error handling.

Nuget Package to use: Sustainsys.Saml2.Mvc [https://www.nuget.org/packages/Sustainsys.Saml2.Mvc/]

See Configuration for information about how to configure the web.config file.

Owin Middleware

The Owin middleware is modeled after the external
authentication modules for social login (such as Google, Facebook,
Twitter). This allows easy integration with ASP.NET Identity for
keeping application specific user and role information.

Nuget Package to use: Sustainsys.Saml2.Owin [https://www.nuget.org/packages/Sustainsys.Saml2.Owin/]

See the Owin Middleware page for
information on how to set up and use the middleware.

ASP.NET Core 2 Handler

The ASP.NET Core 2 Handler is compatbile with the ASP.NET Core 2.0
authentication model.

Nuget Package to use: Sustainsys.Saml2.AspNetCore2 [https://www.nuget.org/packages/Sustainsys.Saml2.AspNetCore2/]

HOW TO CONFIGURE ASP.NET CORE 2 – owin middleware doc? somewhere else?

IdentityServer[3/4] Integration

If you’re using IdentityServer (v3 or later), you may want to
configure SAML identity providers like Okta or Ping as external
identity providers within your IdentityServer implementation.

The Owin & ASP.NET Core2 modules enable SAML identity
providers to be integrated within IdentityServer3 [https://github.com/IdentityServer/IdentityServer3] and
IdentityServer4 [https://github.com/IdentityServer/IdentityServer4] packages.

Nuget Package to use for IdentityServer3: Sustainsys.Saml2.Owin [https://www.nuget.org/packages/Sustainsys.Saml2.Owin/]
Nuget Package for IdentityServer4: Sustainsys.Saml2.AspNetCore2 [https://www.nuget.org/packages/Sustainsys.Saml2.AspNetCore2/]

Review this document to see how to configure Saml2 with
IdentityServer3 and Okta to add Okta as an
identity provider to an IdentityServer3 project. There is
also a SampleIdentityServer3 project in the Saml2 repository.

Note

There is also a Sustainsys.Saml2 Nuget package, but this only contains functionality shared
across the packages above and is not meant to be referenced directly in other projects.

 Configuration

Configuration

To use Sustainsys.Saml2 in an application and configure it in web.config
(which is the default for the HttpModule and MVC libraries) it must be enabled
in the application’s web.config. The sample applications contains complete
working web.config [https://github.com/Sustainsys/Saml2/blob/master/Samples/SampleHttpModuleApplication/Web.config] examples. For
ASP.NET MVC applications see this working web.config [https://github.com/Sustainsys/Saml2/blob/master/Samples/SampleMvcApplication/Web.config]
example.

Note

Applications using the Owin library usually make their configuration
in code and in that case no web.config changes are needed. If an Owin library
is set up to use web.config (by passing true to the Saml2AuthenticationOptions
constructor) the information here applies.

 Owin Middleware

Owin Middleware

The Sustainsys Saml2 Owin middleware is designed to be used with an Owin authentication pipeline
and is compatible with ASP.NET Identity. Sustainsys Saml2 provides external login in the same way as the
built-in Google, Facebook and Twitter providers.

To use the Sustainsys Saml2 middleware, it needs to be configured in Startup.Auth.Cs.

app.UseSaml2Authentication(new Saml2AuthenticationOptions());

The Saml2AuthenticationOptions class only contains the Owin-specific configuration (such as the name used to
identify the login provider). The rest of the configuration is read from the web.config/app.config and
configured in the same way as when using the http module or the MVC controller.

If you would like to provide the Saml2-related configuration in code, specify false for the loadConfiguration constructor
parameter and then build the options based on your own logic. For example:

var mySaml2Options = new Saml2AuthenticationOptions(false)
// more logic to set SPOptions, etc.
app.UseSaml2Authentication(mySaml2Options);

You can see a full example of this in the SampleOwinApplication [https://github.com/Sustainsys/Saml2/tree/master/Samples/SampleOwinApplication] project
included in the source code. See the Startup.Auth.cs file.

Selecting Idp

An Owin-based application issues an AuthenticationResponseChallenge to ask the middleware to begin the authentication
procedure. In that challenge, there is a properties dictionary. To use a specified idp, the entity id of the idp should be
entered in that dictionary under the key “idp”.

In a typical MVC application that requires some changes to the generated code to enable passing a
property to the AuthenticationProperties dictionary.

Another, more simple way to pass a value is to put it directly in the Owin environment dictionary under the key “saml2.idp”.

Here’s an example of how to set the Owin environment value through ASP.NET MVC:

var context = HttpContext.GetOwinContext();
context.Environment.Add("saml2.idp", new EntityId(YOUR_IDP_ENTITY_ID));

Module Path and Metadata

By default the module path is /Saml2 but you can specify a different modulepath in your SPOptions object mentioned above.

The metadata URL is the root of this module path.

 ClaimsAuthenticationManager

ClaimsAuthenticationManager

When using federated authentication, the identity provider solely decides what claims to use to
populate the incoming identity. If using multiple identity providers there is very high probability that
they will present the same information in somewhat different ways. That’s where the ClaimsAuthenticationManager
fits in. It works as a translation filter that can modify or replace the incoming identity as soon as it has
been constructed from the incoming authentication response.

You can implement a ClaimsAuthenticationManager by creating a class derived from the
System.Security.Claims.ClaimsAuthenticationManager class.

Then register it with a <claimsAuthenticationManager> element in the configuration if the configuration is
loaded from the config file. If the configuration is done in code (typically for the OWIN middleware)
the ClaimsAuthenticationManager should be registered in
Options.SPOptions.SystemIdentityModelIdentityConfiguration.ClaimsAuthenticationManager.

Single Logout

If you are using Single Logout, you need to make sure that the claims containing the Saml2 logout information
are present in the returned identity. The types of the claims are available in
Saml2ClaimTypes.SessionIndex and Saml2ClaimTypes.LogoutNameIdentifier.

 IdentityServer3 with Okta

IdentityServer3 with Okta

Sustainsys Saml2 can be used very effectively to extend the functionality of IdentityServer3 by adding support
for SAML-based identity providers, such as Okta and OneLogin. This example will show how to add Okta as an
identity provider to IdentityServer3 using the Sustainsys Saml2 package.

Step 0: Establish identity server using IdentityServer3

This article assumes that you already have your own identity server project set up and that it uses
IdentityServer3. If you haven’t, check out the documentation and samples for that project and then come back here
when you have a working identity server.

Step 1: Add the NuGet package to your identity server

The package you need is Sustainsys.Saml2.Owin. Install that to the project where you have IdentityServer3 established.
We’ll add the necessary configuration to establish the Okta identity provider in identity server later, after we’ve
set up the application within Okta.

Step 2: Configure an Application within Okta

If you don’t already have an instance of Okta (or don’t have access to one with admin / configuration privileges), you
can create a developer instance. Ultimately, you will want to add an “Application” to this instance. Add one, and
give it some kind of name, and you will get to the important part of configuring the application. Below is the SAML
settings screen and a description of how to specify these options.

[image: _images/OktaAppOptions.png]

	Item

	Explanation

	Single Sign-On URL

	This is the Assertion Consumer Service (ACS) endpoint within the application. In our case, this is the core endpoint
of the app, plus /Saml2/Acs. So if your Identity Server is at https://id.local/identity, then your value here would
be https://id.local/identity/Saml2/Acs.

	Audience URI

	This should be the metadata URL of the audience (in this case, your identity server’s SAML metadata), so use the
ACS endpoint minus the ACS. Carrying forward the example, this would be https://id.local/identity/Saml2.

	Name ID Format

	This will be the Okta username for any of your users. I chose the X509SubjectName with Okta UserName. I’m
assuming that you’ve probably got some kind of custom user service within Identity Server to get your own
claims – or even if you don’t, you have the “Users” object defined with some hard coded users or something. What
you need to be able to do is determine YOUR username from something that Okta can pass back to you
for THEIR username. Choose from the available options, knowing that you may need to translate it a bit to get
to your username.

Step 3: Configure your identity server with the new identity provider

Most of what you need to do is pretty easily seen by just looking at the code below along with the comments
that simply refer back to the Okta configuration points in Step 2.

Metadata: You will need to provide the “metadata URL” in the code below. To get this, you can look at
the “Sign On” tab within the Okta application configuration area, and right-click the “Identity Provider metadata” link
and copy the URL.

Entity ID: You can determine this by clicking the View Setup Instructions button and looking for
the “Identity Provider Issuer” value.

[image: _images/OktaMetadata.png]
public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 var options = Helpers.GetIdentityServerOptions(); // a helper function where we specify our IdSrv3 options
 options.AuthenticationOptions = new AuthenticationOptions
 {
 IdentityProviders = ConfigureIdentityProviders
 };

 app.UseCookieAuthentication(new CookieAuthenticationOptions());
 app.SetDefaultSignInAsAuthenticationType(CookieAuthenticationDefaults.AuthenticationType);
 app.Map("/identity", idsrvApp =>
 {
 idsrvApp.UseIdentityServer(options);
 });
 }

 public static void ConfigureIdentityProviders(IAppBuilder app, string signInAsType)
 {
 var saml2Options = new Saml2AuthenticationOptions(false)
 {
 SPOptions = new SPOptions
 {
 AuthenticateRequestSigningBehavior = SigningBehavior.Never // or add a signing certificate
 EntityId = new EntityId("<okta Audience URI>") // from (B) above
 },
 SignInAsAuthenticationType = signInAsType,
 AuthenticationType = "okta", // the "idp" - identity provider - that you can refer to throughout identity server
 Caption = "Okta", // the caption for the button or option that a user might see to prompt them for this login option
 };

 saml2Options.IdentityProviders.Add(new IdentityProvider(
 new EntityId("<OktaIssuerUri>"), saml2Options.SPOptions) // from (F) above
 {
 LoadMetadata = true,
 MetadataLocation = "https://<OktaInstance>/app/<OktaAppId>/sso/saml/metadata" // see Metadata note above
 });

 app.UseSaml2Authentication(saml2Options);
 }
}

Note

Regarding the “AuthenticateRequestSigningBehavior” above: Okta sets a value in their metadata that specifies
WantAuthnRequestsSigned="true", which means that Saml2 will try to sign outgoing AuthN requests. The code above
does work – the “Want” doesn’t imply “Require”. To actually honor the request, though and enable signing, you need
to go a step further:

To enable signing, call saml2Options.ServiceCertificates.Add(new ServiceCertificate { ... }) to configure the
certificate Saml2 should use for signing. That certificate should be something that you have generated on your
end, where you have a private key. If you don’t have that already, I’d suggest going with the
SigningBehavior.Never option.

 Troubleshooting

Troubleshooting

If you’re having trouble - don’t give up! :)

The items below may point you in the right direction.

	Check the issues archive [https://github.com/Sustainsys/Saml2/issues].

	Check the SAML2 specification [http://saml.xml.org/saml-specifications], starting with the core section, or the newer OASIS Saml Wiki [https://wiki.oasis-open.org/security/FrontPage].

	Log your actual SAML2 conversation with SAML Chrome Panel [https://chrome.google.com/webstore/detail/saml-chrome-panel/paijfdbeoenhembfhkhllainmocckace] or SAML Tracer for Firefox [https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/].

	Connect an ILoggerAdapter to your SPOptions.Logger. If you are using the OWIN middleware this is done for you automatically and you can see the output in the OWIN/Katana logging.

	Last but not least, download the Saml2 source and check out what’s really happening.

 Contributing

Contributing

Sustainsys.Saml2 is maintained by and have mostly been developed by Sustainsys in Stockholm, Sweden. The library’s
source code is hosted on github [https://github.com/Sustainsys/Saml2]. When doing work on protocol features, it is recommended to consult
the official SAML specifications [https://wiki.oasis-open.org/security/FrontPage#SAMLV2.0Standard].

Issue tracking

Github issues are used to keep track of issues and releases. For requests of functionality or to
report bugs, please open an issue in the github repo. It is advised to open an issue describing the plans
before starting any major coding work. Discussing before writing code significantly reduces the risk of
getting a pull request denied.

Versioning

Sustainsys uses semantic versioning as defined on http://semver.org/.
Given a version number MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner, and

	PATCH version when you make backwards-compatible bug fixes.

Coding Conventions

The coding conventions follow the classic .NET style of coding, with the following styles:

	Always use {} for if statements, even when there is only one line.

	Code analysis is enabled and all code should compile without compiler warnings or code analysis errors. Code analysis warnings that are not relevant are supressed in the source. Rules should only be disabled on a global level if it really is appropriate to disable the rule for the entire code base. Unknown words are added to CustomDictionary.xml instead of suppressing individual warnings.

	Private members in classes are named with camelCasing, no underscores or similar.

	Member variables are not prefixed with this. unless required to resolve ambiguity (such as in a constructor having parameters with the same name as the members).

	Any single method is short enough to fit on one screen (on a typical laptop monitor, not a 30-inch development monster-monitor in vertical orientation).

	The code is formatted to (mostly) fit in 80 columns.

Unit Tests

The Sustainsys.Saml2 library has been developed using TDD (Test Driven Development). All functionality is covered
by tests, and it will remain that way. Pull requests will only be merged if they contain tests covering the
added functionality. Parts of the code that aren’t practically possible to test because of tight integration with
the web server (see e.g. CommandResult.ApplyPrincipal) are excluded from this rule and should be
marked with an [ExcludeFromCodeCoverage] attribute. The code coverage report is at 100.00% coverage
and should remain so.

Continuous Integration / Build Server

All pull requests are built on AppVeyor and code coverage is checked.

Branching

To make a clean pull request, it is important to follow some git best practices. Nancy has an
excellent guide [https://github.com/NancyFx/Nancy/wiki/Git-Workflow] that outlines the steps required.

Licensing

The library is licensed under LGPL and by submitting code it is accepted that the submitted code will be
released under the same license. Third party code may only be added to the library if the author of the
pull request holds the copyright to the code, or the code is previously licensed under a
license compatible with LGPL.

 <sustainsys.saml2> Element

<sustainsys.saml2> Element

The <sustainsys.saml2> element is a child node of the <configuration> element. Its
attributes are listed and described below, and its child elements are listed as well and
are linked to full explanations of each.

Attributes

	returnUrl

	The Url that you want users to be redirected to once the authentication is complete. This is typically the start
page of the application, or a special signed in start page.

	entityId

	The name that this service provider will use for itself when sending messages. The name will end up in the Issuer
field in outcoing authnRequests.

The SAML standard requires the entityId to be an absolute URI. Typically it should be the URL where the metadata
is presented. E.g. http://sp.example.com/Saml2/.

	discoveryService (Optional)

	Specifies an idp discovery service to use if no idp is specified when calling sign in. Without
this attribute, the first idp known will be used if none is specified.

	modulePath (Optional)

	Indicates the base path of the Saml2 endpoints. Defaults to /Saml2 if not specified. This can usually be left as the
default, but if several instances of Saml2 are loaded into the same process they must each get a separate base path.

	authenticateRequestSigningBehavior (Optional)

	Sets the signing behavior for generated AuthnRequests. Three values are supported:

	Never: Saml2 will never sign any created AuthnRequests.

	Always: Saml2 will always sign all AuthnRequests.

	IfIdpWantAuthnRequestsSigned (default if the attribute is missing): Saml2 will sign AuthnRequests if the idp is configured for it (through config or listed in idp metadata).

	validateCertificates (Optional)

	Normally certificates for the IDPs signing use is communicated through metadata and in case of a breach, the
metadata is updated with new data. If you want extra security, you can enable certificate validation (the
default value for this attribute is false). Please note that the SAML metadata specification explicitly
places no requirements on certificate validation, so don’t be surprised if an Idp certificate doesn’t pass validation.

	publicOrigin (Optional)

	Indicates the base url of the Saml2 endpoints. It should be the root path of the application. E.g. The SignIn url is
built up as PublicOrigin + / + modulePath + /SignIn. Defaults to Url of the current http request if not
specified. This can usually be left as the default, but if your internal address of the application is
different than the external address the generated URLs (such as AssertionConsumerServiceURL in the
saml2p:AuthnRequest) then this will be incorrect. The use case for this is typically with load balancers
or reverse proxies. It can also be used if the application can be accessed by several external URLs to make sure
that the registered in metadata is used in communication with the Idp.

If you need to set this value on a per-request basis, provide a GetPublicOrigin Notification function instead.

	outboundSignAlgorithm (Optional)

	By default Saml2 uses SHA256 signatures if running on .NET 4.6.2 or later or when you
have called GlobalEnableSha256XmlSignatures(). Otherwise, it uses SHA1 signatures. Use this attribute to
set the default signing algorithm for any messages (including metadata) that Saml2 generates. Possible values:

	SHA1 (or http://www.w3.org/2000/09/xmldsig#rsa-sha1)

	SHA256

	SHA384

	SHA512

The full url identifying the algorithm can also be provided. The algorithm can be overridden for each IdentityProvider
too.

	minIncomingSigningAlgorithm (Optional)

	The minimum strength required on signatures on incoming messages. Messages with a too weak signing algorithm will be
rejected. By default Saml2 requires SHA256 signatures if running on .NET 4.6.2 or later or when you have
called GlobalEnableSha256XmlSignatures(). Otherwise, it uses SHA1 signatures.

Possible values:

	SHA1 (or http://www.w3.org/2000/09/xmldsig#rsa-sha1)

	SHA256

	SHA384

	SHA512

The full url identifying the algorithm can also be provided.

Elements

The following are the possible children elements of the <sustainsys.saml2> element. Each are provided as a
link below with full explanations of each.

	nameIdPolicy

	requestedAuthnContext

	metadata

	identityProviders

	federations

	serviceCertificates

	compatibility

 <nameIdPolicy> Element

<nameIdPolicy> Element

This is an optional child element of the sustainsys.saml2 element.

This element controls the generation of NameIDPolicy element in AuthnRequests. The element
is only created if either allowCreate or format are set to a non-default value.

Attributes

	allowCreate (Optional)

	Default value is empty, which means that the attribute is not included in generated AuthnRequests.
Supported values are true or false.

	format (Optional)

	Sets the requested format of NameIDPolicy for generated authnRequests.

Supported values (see section 8.3 in the SAML2 Core specification [http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf] for explanations of the values).

	Unspecified

	EmailAddress

	X509SubjectName

	WindowsDomainQualifiedName

	KerberosPrincipalName

	EntityIdentifier

	Persistent

	Transient

If no value is specified, no format is specified in the generated AuthnRequests. If Transient is specified, it
is not permitted to specify allowCreate (see 3.4.1.1 in the SAML2 Core spec [http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf]).

 <requestedAuthnContext> Element

<requestedAuthnContext> Element

This is an optional child element of the sustainsys.saml2 element.

Attributes

	classRef (Optional)

	Class reference for authentication context. Either specify a full URI to identify an authentication context
class, or a single word if using one of the predefined classes in the SAML2 Authentication context specification:

	InternetProtocol

	InternetProtocolPassword

	Kerberos

	MobileOneFactorUnregistered

	MobileTwoFactorUnregistered

	MobileOneFactorContract

	MobileTwoFactorContract

	Password

	PasswordProtectedTransport

	PreviousSession

	X509

	PGP

	SPKI

	XMLDSig

	Smartcard

	SmartcardPKI

	SoftwarePKI

	Telephony

	NomadTelephony

	PersonalTelephony

	AuthenticatedTelephony

	SecureRemotePassword

	TLSClient

	TimeSyncToken

	unspecified

	comparison (Optional)

	Comparison method for authentication context as signalled in AuthnRequests.
Valid values are:

	Exact (default)

	Minimum

	Maximum

	Better

Minimum is an inclusive comparison, meaning the specified classRef or anything better is
accepted. Better is exclusive, meaning that the specified classRef is not accepted.

 <metadata> Element

<metadata> Element

This is an optional child element of the sustainsys.saml2 element.

The metadata part of the configuration can be used to tweak the generated metadata. These configuration options
only affect how the metadata is generated, no other behavior of the code is changed.

Attributes

	cacheDuration (Optional)

	Describes for how long in anyone should cache the metadata presented by the service provider before trying
to fetch a new copy. Defaults to one hour.

Examples of valid format strings:

	1 day, 2 hours: 1.2:00:00

	42 seconds: 0:00:42

	validDuration (Optional)

	Sets the maximum time that anyone may cache the generated metadata. If cacheDuration is specified, the
remote party should try to reload metadata after that time. If that refresh fails, validDuration determines
for how long the old metadata may be used before it must be discarded.

In the metadata, the time is exposed as an absolute validUntil date and time. That absolute time is
calculated on metadata generation by adding the configured validDuration to the current time.

Examples of valid format strings:

	1 day, 2 hours: 1.2:00:00

	42 seconds: 0:00:42

	wantAssertionSigned (Optional)

	Signal to IDPs that we want the Assertions themselves signed and not only the SAML response. Saml2 supports
both, so for normal usage this shouldn’t matter. If set to false the entire wantAssertionsSigned attribute
is dropped from the metadata as the default values is false.

Elements

The following are the possible children elements of the <metadata> element. Each are provided as a
link below with full explanations of each.

	organization

	contactPerson

	requestedAttributes

 <organization> Element

<organization> Element

Optional child element of the <metadata> Element element.

Provides information about the organization supplying the SAML2 entity (in plain English that means the organization
that supplies the application that Saml2 is used in).

Attributes

	name

	The name of the organization.

	displayName

	The display name of the organization.

	url

	URL to the organization’s web site.

	language

	In the generated metadata, the name, displayName and url attributes have a language specification. If none
is specified, the xml:lang attribute will be generated with an empty value.

 <contactPerson> Element

<contactPerson> Element

Optional child element of the <metadata> Element element.

Attributes

	type

	The type attribute indicates the type of the contact and is picked from the ContactType enum. Valid values are:

	Administrative

	Billing

	Other

	Support

	Technical

	company (Optional)

	Name of the person’s company.

	givenName (Optional)

	Given name of the contact person.

	surname (Optional)

	Surname of the contact person.

	phoneNumber (Optional)

	Phone number of the contact person. The SAML standard allows multiple phone number to be specified. Saml2 supports
that, but not through the configuration file.

	email (Optional)

	Email address of the person. The SAML standard allows multiple email addresses to be specified. Saml2
supports that, but not through the configuration file.

 <requestedAttributes> Element

<requestedAttributes> Element

Optional child element of the <metadata> Element element.

List of attributes that the SP requests to be included in the assertions generated by an identity provider.
Each attribute is added to the list with an <add> element.

The element should look something like this:

<requestedAttributes>
 <add name="" friendlyName="" nameFormat="" isRequired=""/>
 <add name="" friendlyName="" nameFormat="" isRequired=""/>
 ...
</requestedAttributes>

Attributes

	name

	The name of the attribute. This is usually in the form of an urn/oid, e.g. urn:oid:1.2.3. The format of the
name should be specified in the nameFormat attribute.

	friendlyName (Optional)

	An optional friendly (i.e. human readable) friendly name of the attribute that will be included in the
metadata. Please note that the SAML2 standard specifically forbids the friendlyName to be used for anything
other than information to a human. All matching of attributes must use the name.

	nameFormat (Optional)

	Format of the name attribute. Valid values are:

	urn:oasis:names:tc:SAML:2.0:attrname-format:uri

	urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified

	urn:oasis:names:tc:SAML:2.0:attrname-format:basic

	isRequired (Optional)

	true or false value indicating whether the attribute is required by the service provider or just a
request that it would be nice if the Idp includes it.

 <identityProviders> Element

<identityProviders> Element

This is an optional child element of the sustainsys.saml2 element.

It indicates a list of identity providers known to the service provider.

Each identity provider is added as an <add> element to the <identityProviders> element and
the element will end up looking something like what is shown below. Note the possible child element
of the <signingCertifcate> which is shown in the second added identity provider element below.

<identityProviders>
 <add entityId="" signOnUrl="" logoutUrl="" allowUnsolicitedAuthnResponse="" binding=""
 wantAuthnRequestsSigned="" loadMetadata="" metadataLocation="" disableOutboundLogoutRequests="" outboundSigningAlgorithm=""/>
 <add entityId="" signOnUrl="" logoutUrl="" allowUnsolicitedAuthnResponse="" binding=""
 wantAuthnRequestsSigned="" loadMetadata="" metadataLocation="" disableOutboundLogoutRequests="" outboundSigningAlgorithm="">
 <signingCertificate storeName="" storeLocation="" findValue="" x509FindType="" />
 </add>
 ...
</identityProviders>

Attributes

	entityId

	The issuer name that the idp will be using when sending responses. When <loadMetadata> is enabled, the entityId
is treated as a URL to for downloading the metadata.

	signOnUrl (Optional)

	The url where the identity provider listens for incoming sign on requests. The url has to be written in a
way that the client understands, since it is the client web browser that will be redirected to the url. Specifically,
this means that using a host name only url or a host name that only resolves on the network of the server won’t work.

	logoutUrl (Optional)

	The url where the identity provider listens for incoming logout requests and responses. To enable single logout
behaviour there must also be a service certificate configured in Saml2 as all logout messages must be signed.

	allowUnsolicitedAuthnResponse

	Allow unsolicited responses. That is, Idp initiated sign on where there was no prior AuthnRequest. If true
InResponseTo is not required and the IDP can initiate the authentication process. If false InResponseTo is
required and the authentication process must be initiated by an AuthnRequest from this SP. Note that if the
authentication was SP-intiatied, RelayState and InResponseTo must be present and valid.

	binding (Optional)

	The binding that the services provider should use when sending requests to the identity provider. One of the supported
values of the Saml2BindingType enum.

	HttpRedirect

	HttpPost

	Artifact

	wantAuthnRequestsSigned (Optional)

	Specifies whether the Identity provider wants the AuthnRequests signed. Defaults to false.

	loadMetadata (Optional)

	Load metadata from the idp and use that information instead of the configuration. It is possible to use a
specific certificate even though the metadata is loaded, in that case the configured certificate will take
precedence over any contents in the metadata.

	metadataLocation (Optional)

	The SAML2 metadata standard strongly suggests that the Entity Id of a SAML2 entity is a URL where the
metadata of the entity can be found. When loading metadata for an idp, Saml2 normally interprets the
EntityId as a url to the metadata. If the metadata is located somewhere else it can be specified with this
configuration parameter. The location can be a URL, an absolute path to a local file or an app relative
path (e.g. ~/App_Data/IdpMetadata.xml)

	disableOutboundLogoutRequests (Optional)

	Disable outbound logout requests to this idp, even though Saml2 is configured for single logout and the idp
supports it. This setting might be usable when adding SLO to an existing setup, to ensure that everyone is
ready for SLO before activating.

	outboundSigningAlgorithm (Optional)

	By default Saml2 uses SHA256 signatures if running on .NET 4.6.2 or later and otherwise SHA1 signatures. Set this
to set the signing algorithm for any outbound messages for this identity provider. Possible values:

	SHA1

	SHA256

	SHA384

	SHA512

Elements

The following are the possible children elements of the <identityProviders> element. Each are provided as a
link below with full explanations of each.

	signingCertificate

 <signingCertificate> Element

<signingCertificate> Element

Optional element of the identityProvider element.

The certificate that the identity provider uses to sign its messages. The certificate can either be loaded from
file if the fileName attribute is specified or from a certificate store if the other
attributes are specified. If a fileName is specified that will take precedence and the other attributes will be ignored.

Warning

File-based certificates are only recommended for testing and during
development. In production environments it is better to use the certificate store.

 <federations> Element

<federations> Element

This is an optional child element of the sustainsys.saml2 element.

This element contains a list of federations that the service provider knows and trusts.

As with some other elements, individual items are added via an <add> element inside this element,
so you’ll end up with XML that looks like the following:

<federations>
 <add metadataLocation="" allowUnsolicitedAuthnResponse="" />
 <add metadataLocation="" allowUnsolicitedAuthnResponse="" />
 ...
</federations>

Attributes

	metadataLocation

	URL to the full metadata of the federation. Saml2 will download the metadata and add all identity
providers found to the list of known and trusted identity providers. The location can be a URL, an
absolute path to a local file or an app relative path (e.g. ~/App_Data/IdpMetadata.xml)

	allowUnsolicitedAuthnResponse

	true or false value indicating whether unsolicited authn responses should be allowed from the
identity providers in the federation.

 <serviceCertificates> Element

<serviceCertificates> Element

This is an optional child element of the sustainsys.saml2 element.

Specifies the certificate(s) that the service provider uses for encrypted assertions (and for signed requests, once
that feature is added). If neither of those features are used, this element can be ommitted.

The public key(s) will be exposed in the metadata and the private key(s) will be used during decryption/signing.

Individual certificates are added via an <add> element, so the resulting XML will be similar to the following:

<serviceCertificates>
 <add use="" status="" metadataPublishOverride="" />
 <add use="" status="" metadataPublishOverride="" />
 ...
</serviceCertificates>

Attributes

	use

	Indicates how the certificate will be used. Options are:

	Signing

	Encryption

	Both (default)

	status

	Indicates whether the certificate is a current or future certificate – used in key rollover scenarios. Options are:

	Current (default)

	Future

	metadataPublishOverride

	By default the certificate will be used and published by the rules shown in the table below. To
override this behavior choose one of the following options for this attribute:

	None (Default) - published according to the rules in the table below.

	PublishUnspecified

	PublishEncryption

	PublishSigning

	DoNotPublish

	Use

	Status

	Published in Metadata

	Used by Saml2

	Both

	Current

	Unspecified unless Future key exists, then Signing

	Yes

	Both

	Future

	Unspecified

	For decryption only

	Signing

	Current

	Signing

	Yes

	Signing

	Future

	Signing

	No

	Encryption

	Current

	Encryption unless Future key exists then not published

	Yes

	Encryption

	Future

	Encryption

	Yes

 <compatibility> Element

<compatibility> Element

This is an optional child element of the sustainsys.saml2 element.

Enables overrides of default behaviour to increase compatibility with identity providers.

Attributes

	unpackEntitiesDescriptorInIdentityProviderMetadata (Optional)

	If an EntitiesDescriptor element is found when loading metadata for an IdentityProvider, automatically
check inside it if there is a single EntityDescriptor and in that case use it.

	IgnoreAuthenticationContextInResponse

	Do not read the AuthnContext element in Saml2Response. If you do not need these values to be present as
claims in the generated identity, using this option can prevent XML format
errors (System.Xml.XmlException: ID0013: The value must be an absolute URI), when value cannot parse
as absolute URI.

 Index

Index

_static/comment-bright.png

_images/OktaMetadata.png
